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Abstract: Solid oxide fuel cells (SOFCs) represent a promising technology in the energy sector.
One of their advantages is high efficiency. Improvements are necessary, for example, to be able to
reduce their operating temperatures or to speed up starting times. Developing efficient control-
oriented models for the SOFC temperature has also been in the focus of ongoing research. The goal
here is to devise (global) dynamic models valid for a wide range of operating conditions instead of
obtaining (linear) approximations of the behavior only for a certain mode of operation. The use
of methods with result verification helps to address reliability of SOFC models and to take into
account bounded uncertainty.

Dynamic SOFC models are systems of differential equations, the parameters of which have to be
fitted to the available sensor data (usually, thousands of measurements). Normally, such differential
equations do not have analytical solutions if we keep in mind the goal of devising models suitable
for a wide range of operating conditions. In this paper, we point out two simplification possibilities
possessing closed-form solutions along with their areas of validity. Moreover, we study their potential
with respect to uncertainty handling with the focus on simulation. We perform a sensitivity analysis
for different variants of the suggested simplifications. Finally, we consider uncertainty of different
magnitudes in heat capacities of gases, which we propagate through the system using interval, affine
and Taylor model based methods.
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1. Introduction

Modern engineering tasks pose high requirements on safety and reliability of a manufactured system.
To check such requirements, developers often have to work with computer simulations of the system
instead of the system itself (or even its prototype) in order to keep the costs low. For that purpose,
a mathematical model for the system in question is developed and implemented on a computer.
However, both the mathematical model of a complex system and its implementation are in general
inexact and could introduce a considerable inaccuracy into the simulated outcome. Ideally, this
inaccuracy has to be taken into account while checking the above mentioned requirements so that
system verification, validation and uncertainty quantification gain more and more importance. In
the last decades, the techniques and methodologies for that purpose initially suggested, for example,
in (AIAA, 1998), have been studied, improved and extended continuously (e.g., (Oberkampf at al.,
2003; Auer and Luther, 2009; Henninger et al., 2010)).
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Assuming that the mathematical model is accurate enough, verification answers the question of
whether the computer-obtained (numerical) outcome is the correct result of the model. That is, the
question of whether the mathematical model and its associated implementation actually produce
realistic results remains unanswered during verification, to be handled separately during system
validation. Uncertainty handling helps to account for inherent stochasticity in or lack of knowledge
about the system. For example, it is well-known that physical quantities such as lengths or masses
can only be measured with a certain (small) inaccuracy so that the result is actually not a single
real number but a (continuous) set of numbers. Methods for forward uncertainty quantification are
able to propagate such input through the system, providing (an approximation of) the resulting
output set.

A less widely known possibility to deal with inaccuracies in the model is to use methods
with result verification, for example, interval analysis (Moore et al., 2009). Such methods prove
mathematically that the outcome of a computer simulation is correct with respect to the un-
derlying mathematical model. As a result, they usually supply a set of machine numbers which
with absolute certainty contains the exact model outcome. Almost as a by-product, methods with
result verification allow us to propagate bounded uncertainty in parameters directly through the
implementation of the mathematical model (provided that the appropriate implementation exists).
A common drawback is the possibility of too conservative bounds for the solution sets (e.g., between
−∞ and +∞) resulting from the dependency problem or the wrapping effect (Lohner, 2001).

Current research (Rauh et al., 2015; Auer et al., 2012) shows that interval analysis helps to
improve and develop control-oriented models for solid oxide fuel cells (SOFC) with the focus
on reliability and uncertainty quantification. SOFCs are devices converting chemical energy into
electricity using ceramics as the electrolyte. Working at high temperatures, they are sensitive to
overheating, but can theoretically achieve the overall efficiency of up to 85%. General research goals
in this area are, for example, the reduction of operating temperatures or a speed-up in the starting
times. In recent years, developing efficient control-oriented models for the temperature of SOFCs
has also been in the focus of ongoing research, see (Huang et al., 2012; Rauh et al., 2014). The goal
here is to devise (global) dynamic models valid for a wide range of operating conditions instead of
obtaining (linear) approximations of the behavior only for a certain mode of operation.

Dynamic SOFC models are systems of differential equations with many unknown parameters,
for example, heat capacities of the involved gases. These quantities have to be chosen in such
a way as for the model to reflect the experimental data (usually, thousands of measurements).
The traditional approach in this case is to use the least squares optimization for parameters. One
difficulty is that the differential equations representing the mathematical SOFC model do not have
analytical solutions. That is, to measure the difference between the modeled and experimental
result, which is necessary for the objective function of the least squares method, the modeled
solution is either approximated by an analytical expression or obtained numerically, increasing the
overall imprecision (cf. Section 2). Another difficulty is the necessity to compute the sum of squares
of such differences for a large number of measurements, leading to various numerical problems.

An obvious approach to solve the first problem is to simplify the available models. In principle,
it could be contradictory to the goal of obtaining models valid under various operating conditions.
In (Auer at al., 2015), we pointed out two simplification possibilities for general SOFC models along
with their corresponding validity areas. For these simplifications, we derived a closed form solution
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and assessed the performance. In this paper, we carry out a sensitivity analysis for both variants and
study their potential with respect to uncertainty handling (corresponding to the second difficulty
mentioned above) using methods with result verification, in particular, Taylor models (Berz, 1995)
and affine forms (de Figueiredo and Stolfi, 2004). Throughout the paper, we rely on the framework
UniVerMeC (Kiel, 2014) which allows us to use the same models with different kinds of verified
or floating point methods in an efficient way.

The structure of the paper is as follows. In the next section, we give a very brief overview of the
theory on parameter identification for SOFC models. This does not include the details on how SOFC
models are actually obtained, which can be found elsewhere (Huang et al., 2012). Although methods
with result verification are less established in the engineering community, they are well-known in
general, so that we omit their description and refer interested readers to (Moore et al., 2009). We
specify the kinds of possible SOFC models from the point of view of verification and validation
analysis as well as our understanding of the sensitivity analysis in this case in the remainder of
Section 2. Section 3 provides the details on the above-mentioned simplification possibilities. In
Section 4, we describe the most important features of UniVerMeC and use this tool to actually
carry out the sensitivity analysis along with uncertainty quantification. In particular, we explore
the potential for overestimation reduction provided by result verification with dependency tracking.
A summary of the achieved results and an outlook on our future work conclude this paper.

2. Parameter Identification for SOFC Models

A model of an actual SOFC test rig consists of several subsystems each of which is modeled
separately. They describe the behavior of the SOFC stack with respect to its thermodynamics,
fluid mechanics, or electrochemistry. In this paper, we consider only the temperature model (Rauh
et al., 2014; Rauh et al., 2015) based on general techniques from (Huang et al., 2012; Bove and
Ubertini, 2008).

2.1. Modeling the SOFC Temperature

The overall procedure consists of three phases. First, a system of equations is developed to describe
the temperature based on heat flow/energy balances over finite domains (“early lumping”). This
system is used in combination with the finite volume method to obtain a system of ordinary
differential equations (ODEs) for the temperature of the stack (including the behaviour of the
preheaters) in the second step. The dimension of the resulting initial value problem (IVP) for the
ODEs depends on the number of preheaters and on the coarseness of the discretization we consider.
The IVP is used as the basis for the subsequent simulation and control of the SOFC stack in order
to obtain global behaviour, in contrast to the traditional methodology (Bove and Ubertini, 2008)
locally simplifying the system even further.

In this section, we focus on the third step, the parameter identification for the ODE-based
thermal model using the least squares minimization. In general, there are many parameters needing
identification, for example, specific heat capacities of the involved gases, reaction enthalpies or coef-
ficients of heat convection. The first parameter group is usually quite large, since it is assumed that
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a certain heat capacity cgas is not a constant, but itself depends on the temperature. Since the actual
dependency is unknown, it is approximated by polynomials of the second order in temperature θ:

cgas(θ) = cgas,0 + cgas,1 · θ + cgas,2 · θ2 , (1)

which leads to three constant parameters per specific heat capacity. If such approximations are
used, the right hand side of the resulting ODE system is a third-order polynomial in θ because it
contains products of the type cgas · θ. The actual equation for the temperature of the stack θ(t) has
the general form

θ̇(t) = cinvm
(
cgases,AG(θ) ·

(
θinAG(t)− θ(t)

)
+ cgases,CG(θ) ·

(
θinCG(t)− θ(t)

)
+ f(θ(t))

)
, (2)

explained in more detail, for example, in (Rauh et al., 2013). Here, f(θ) contains components
related to Ohmic losses and the heat flows between the stack and environment and of the overall
chemical reaction, which are at most quadratic in temperature in case the reaction enthalpies are
modeled similarly to (1). The symbols θinAG and θinCG denote the temperatures of anode and cathode
gases, respectively (parameters which can be measured and recorded by SOFC test rig sensors).
The constant cinvm is explained in Table I, and cgases,AG(θ), cgases,CG(θ) are the heat capacities of
gases at the anode and cathode, respectively, modeled as in Eq. (1) for each of the involved gases.
We studied this kind of model in (Auer et al., 2012; Kiel at al., 2013; Auer et al., 2014). In this
paper, we simplify (2) as explained in Section 3 and study the resulting models. The rest of this
section contains theory which can be applied generally to all temperature models of the type (2),
simplified or not.

2.2. Parameter Identification for the SOFC Temperature

We obtain values for the parameters of the SOFC temperature model using the least squares
minimization. If the goal is to verify the obtained optimum, the interval technique of global
optimization (Hansen and Walster, 2004) can be employed. A common principle is to minimize
the objective function J (or its worst-case value under uncertainty – its upper bound J in the
interval case) with respect to parameters p:

J =

Te∑
k=Tb

N∑
i=1

(yi(tk, p)− ym,i(tk))2 . (3)

Here, y(tk, p) is the solution to the model equations (e.g., as given in Eqs. (8)–(12)) at the time tk,
k = Tb, . . . , Te. The notation ym,i(tk), i = 1 . . . N , signifies the measured values for the temperature.
Without loss of generality, we assume that the N states that can be measured using the sensors of
the SOFC test rig are the first N ones in the vector y(tk, p). In our context, tk = Tb, Tb + 1, . . . , Te.
That is, J quantifies deviations between the simulated results and the measured output vector
acquired with T = Te − Tb samples and a constant sampling time h = 1s.

The solution y(t, p) is obtained from the corresponding IVP and optimised with respect to the
measured values. Depending on the number of finite volume elements that are used to discretize
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the differential equations for the stack temperature, the resulting ODE system for this quantity has
different number of equations. Until now, we considered one, three, and nine volume elements. If
the preheater models consisting of M equations are used additionally (cf. e.g. Eqs. (8)–(11)), this
results in systems of 1+M , 3+M , and 9+M equations, cf. (Rauh et al., 2013). Finer discretisations
are possible in principle but are expensive computationally and rather unstable numerically. An
empirically motivated additional condition is induced by the accuracy of the measurements:

yi(tk, p) ⊆ [ym,i(tk)−Ki, ym,i(tk) +Ki] =: [∆ym(tk)] for tk = Tb, . . . , Te, i = 1 . . . N , (4)

with constants Ki chosen in accordance with the actual SOFC test rig. A traditional measure for
comparing the quality of the identified parameter sets (because there could be many possibilities)
is the root mean square error e given by

e =

√√√√√ Te∑
k=Tb

(yi(tk)− ym,i(tk))2

Te − Tb
(5)

for each solution component with the index i ∈ {1 . . . N} of y(t) we are interested in.
In the most of our recent publications (e.g., (Auer et al., 2012; Kiel at al., 2013)), we solved the

global optimisation problem (3) by verified approximation: The true solution y(t, p) of the IVP was
approximated by the explicit Euler method as

[y(k)] := [y(k−1)] + h · f([y(k−1)], [p]) , (6)

where f denotes the right side of the IVP (componentwise). The approximation [y(k)] at tk was
substituted for the exact solution y(tk) in the objective function (Eq. (3)) with the sampling time
of h = 1s and the discretisation error ignored. Although we could not verify the whole process by
applying interval optimisation procedures in this case, the approximated cost function

Japp =

Te∑
k=Tb+1

N∑
i=1

(
y

(k−1)
i − ym,i(tk) + h · f(y

(k−1)
i , p)

)2
, (7)

where y(Tb) is the initial condition, was evaluated in a verified way and optimised using an interval
algorithm available in UniVerMeC. Note that the first (and second) derivatives of Japp were
computed exactly with the help of algorithmic differentiation. Although the control-oriented SOFC
models are less complex than those based on, for example, partial differential equations, they
are still complex enough so that their treatment with general-purpose verified global optimisation
software is next to impossible. In particular, the summation in Eq. (3) is carried out for T = 16628
measurements which causes numerical problems even in the usual floating point based case. High
times T are explained by the already mentioned general goal to produce models valid for a wide
range of operating conditions.

REC 2016 - E. Auer and S. Kiel

303



E. Auer and S. Kiel

2.3. Anaylsis of the Model Types; Sensitivity

From the point of view of verification and validation analysis, the optimization problem described
above might take different forms which are verified to different extents. Generally, we can differen-
tiate between four verification categories (Auer and Luther, 2009) summarized from the lowest to
the highest verification extent as follows.

(C4) The implementation of the mathematical model is based on fixed point arithmetic or non-
standard floating point arithmetic.

(C3) The implementation of the mathematical model uses standardized IEEE floating point arith-
metic.

(C2) The implementation of the mathematical model uses verified techniques for several subtasks.

(C1) The implementation of the mathematical model uses verified techniques everywhere.

In the case of SOFC parameter identification, there are two general classification characteristics.
The first one (F1) is the way the simulated solution y(tk, p) of the IVP is obtained in (3). The second
characteristic (F2) is the kind of techniques the implementation relies on (essentially, verified or
usual floating-point). Overall, we can discern the following model types:

(F1) How is y(tk, p) obtained in (3)?

(F1.a) y(tk, p) is computed analytically (a closed-form solution)

(F1.b) y(tk, p) is approximated by an analytic expression (e.g., using the Euler or Heun method)
and the approximation error is neglected, cf. Eq. (7)

(F1.c) y(tk, p) is computed using a “black box” numerical solver (no explicit expression for the
solution)

(F2) What is the underlying technique for the implementation?

(F2.a) Traditional floating point methods

(F2.b) Interval analysis (with result verification; possibility to propagate bounded uncertainty
through the system)

(F2.c) Other techniques with result verification (e.g., affine arithmetic, Taylor models, etc.)

Note that forms F1.a and F1.c combined with F2.b or F2.c correspond to the complete verification
of the model (C1), if optimisation is carried out in a completely verified way. If it is not possible to
verify the optimum and a certain best suitable interval vector is chosen from the list of candidates
produced by global optimisation according to a heuristic technique, then the corresponding degree
is C2. In (Auer et al., 2012; Kiel at al., 2013), we were able to achieve the verification degree of
C2 for SOFC temperature models of dimensions one and three (without considering preheaters) by
using the variant F1.b&F2.b.
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There are two more important notions in the context of verification and validation analysis:
uncertainty quantification and sensitivity analysis. The task of the former is to quantify the un-
certainty in the the model output from the uncertainty in the input (forward propagation) or vice
versa (inverse). Generally, it is easier to solve the first problem than the second, so that there are a
variety of probabilistic (e.g. Monte-Carlo) or non-probabilistic methods (interval or fuzzy analysis)
developed for this purpose. The task of sensitivity analysis is to apportion the uncertainty in the
model output to different sources of uncertainty in the model input (Saltelli et al., 2008). Here, a
good indicator is considered to be the first derivative of the output with respect to the input we
are interested in. The already mentioned framework UniVerMeC allows us to solve both tasks for
different kinds of thermal models for SOFCs.

3. Possibile Simplifications

In a realistic situation, engineers often need a trade-off between a high degree of system reliability
(or verification) and an acceptable computing time (or overall costs). That is, the models might need
simplification if high verification degrees are requested in a real-time simulation or control. In this
section, two obvious possibilities to simplify SOFC temperature models are described. Additionally,
we provide closed form solutions to the suggested models. Note that using the computer algebra
system MATLAB did not work very well for obtaining closed-form expressions (which had to be
derived “by hand”). Although it was possible to compute them in MATLAB in some cases, the
expressions were numerically unstable, leading to overflows with increasing times t.

3.1. Common Settings

We make several simplifying assumptions, some of which are used only for the purpose of clearer
presentation and are not mandatory:

(S1) We consider the nitrogen as the only anode gas for the heating phase without any chemical
reactions of gases (not mandatory)

(S2) We work with a single volume element to describe the temperature of the stack as a whole
(mandatory for obtaining a closed form solution, at least under assumption S3.b)

(S3) We consider different approximations to the heat capacities c(θ) of the nitrogen (the anode gas)
and the cathode gas (mandatory)

(S3.a) cgas(θ) := cgas,0 is constant (corresponds to the model we denote by MPC1 in this paper)

(S3.b) cgas(θ) := cgas,0 + cgas,1 · θ is linear (corresponds to the model MPL1)

In several cases, we take two preheaters into consideration since it improves the overall quality of
SOFC models from the point of view of their control. It is possible include more preheaters into
the overall model or do not consider them al all.

The parameters, variables, and control states still present in MPC1 and MPL1 are given by
Table I. Those denoted by ṁ describe mass flows of, for example, nitrogen. All control variables from
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Table I are assumed to be piecewise constant. That is, we use the information from measurements
to describe these values instead of modeling them by appropriate initial value problems (IVPs).
These measurements are recorded each second (i.e., with the stepsize h = 1s) between Tb = 362 and
Te = 17000 (the heating stage of the experiment). In the same way, it is possible to use sensor data
for the preheater output instead of the IVPs (8)–(11). All parameters are considered to be constant;
their actual values are to be identified by an appropriate optimization procedure (cf. Section 2).
For all variables, the corresponding initial values at the beginning of integration Tb are supposed
to be known.

Because the control variables are piecewise constant, the model IVPs are solved separately in each
time interval [tn−1, tn], tn− tn−1 = 1, n = Tb+1, . . . , Te, since the stepsize for taking measurements
is h = 1s. The initial values in the next step are the results from the previous step so that t0 = tn−1

for the time step tn. If the possibility F2.b is used, we have to work with the interval hull of the
values of the control variables, because we do not know the exact value inside (tn−1, tn), only in
tn−1 and tn.

3.2. Simplified Model MPC1: Constant Heat Capacities

The system of ODEs resulting from the assumptions S1, S2, S3.a is as follows (as a comparison,
the general form under S2 is given in (Auer et al., 2012)):

ẏ0 = T invAG · (u1 − y0) (8)

ẏ1 = T invSL,AG · (y0 − y1) (9)

ẏ2 = T invCG · (u2 − y2) (10)

ẏ3 = T invSL,CG · (y2 − y3) (11)

θ̇ = −cinvm · (kconst − (cCG,0 · y3 + cN2,0 · y1) + klinθ) , (12)

where ka, kconst and klin are defined according to

ka = 234000αi + 448500αj + 345000αk ,

kconst = −θAka ,

klin = ka + ṁin
CG · cCG,0 + ṁin

N2
· cN2,0 ,

and initial conditions yi(Tb) = yici , i = 0, 1, 2, 3, θ(Tb) = θic. The obtained ODE system is linear in
temperature (including the preheater states). The equations (8)–(9) describe the first preheater (for
the nitrogen), Eqs. (10)–(11) the second (for the cathode gas), and Eq. (12) the stack temperature.
We can derive the simple closed form solution to the model:

y0(t) = u1 − (u1 − yic0 )e−T
inv
AG (t−t0) (13)

y1(t) = u1 −
T invSL,AG

T invSL,AG − T invAG

(u1 − yic0 )e−T
inv
AG (t−t0) + kN2e

−T inv
SL,AG(t−t0) (14)

for the anode gas preheater, where kN2 = yic1 −u1+
T inv
SL,AG

T inv
SL,AG−T

inv
AG

(u1−yic0 ). The solution for the cathode

gas preheater has the same form; only the parameters are different. (All labels “N2” (or AG) in
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Table I. Model parameters, control and state variables.

Parameters (to identify)

αi, αj , αk coefficients of heat convection

cN2,0, cN2,1 heat capacity of nitrogen as cN2(θ) = cN2,0(+cN2,1 · θ)
cCG,0, cCG,1 heat capacity of the cathode gas as cCG(θ) = cCG,0(+cCG,1 · θ)

T inv
AG inverse time constant of the anode gas preheater

T inv
CG inverse time constant of the cathode gas preheater

T inv
SL,AG inverse time constant of the anode gas supply line

T inv
SL,CG inverse time constant of the cathode gas supply line

c specific heat capacity of the stack module

m mass of the stack module

cinv
m = 1/(c ·m)

Variables

y0 = vN2 ṁin
N2

· θN2 at the preheater outlet, y0(Tb) =: yic0

y1 = vinN2
ṁin

N2
· θinN2

at the stack inlet, y1(Tb) =: yic1

y2 = vCG ṁin
CG · θCG at the preheater outlet, y2(Tb) =: yic2

y3 = vinCG ṁin
CG · θinCG at the stack inlet, y3(Tb) =: yic3

θ temperature of the stack, θ(Tb) =: θic = 293.9K

Control variables

ṁin
N2

mass flow of anode gas (recorded data)

ṁin
CG mass flow of cathode gas (recorded data)

θA ambient temperature

θdAG desired temperature of the anode gas (recorded data)

θdCG desired temperature of the cathode gas (recorded data)

u1 = vdN2
desired vN2 = θdAG · ṁin

N2

u2 = vdCG desired vCG = θdCG · ṁin
CG

Eqs. (13)–(14) should be changed to “CG”.) If T invSL,AG = T invAG , we obtain trivial solutions y0(t) = yic0 ,

y1 = yic1 .
The solution for the temperature can be obtained after substituting into (12) the corresponding

expressions for y3(t) and y1(t). Using variable separation and variation of the constant delivers the
general solution form as

θ(t) = IN2(t) + ICG(t) + kθe
−cinv

m ·klin(t−t0) − kconst
klin

, (15)
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where

IN2(t) :=
u1 · cN2,0

klin
+ cinvm · cN2,0 ·

(
−

T invSL,AG

(T invSL,AG − T invAG )(cinvm klin − T invAG )
(u1 − yic0 )e−T

inv
AG (t−t0)

+
kN2

cinvm klin − T invSL,AG

e−T
inv
SL,AG(t−t0)

)
,

ICG(t) analogously, and kθ = θic−ICG(t0)−IN2(t0) + kconst
klin

. If T invSL,AG = T invAG and T invSL,CG = T invCG ,
that is, if we have trivial solutions for the preheaters, the corresponding solution for the temperature
is also trivial:

θ(t) = − k̃const
klin

+

(
θic +

k̃const
klin

)
· e−cinv

m ·klin·(t−t0) , (16)

where k̃const = −θA · ka − (cCG,0 · yic3 + cN2,0 · yic1 ). This version of the solution is also useful if we
assume that the preheaters are piecewise constant in time and employ the recorded sensor data
instead of the dynamic model given by Eqs. (8)–(11).

In principle, we can use the same approach to obtain closed-form solutions for temperature mod-
els of higher dimensions with constant heat capacities. If the preheaters are assumed to be constant,
the resulting linear system has only constant coefficients so that well-known techniques from the
calculus can be employed. However, the expressions become very complicated. The numerical results
from, for example, (Auer at al., 2015), suggest that there is almost no gain in using them even in
the one dimensional case MPC1 from the point of view of the computing time for identification.
One of their advantages is higher accuracy: better model parameter sets can be identified with
their help. In (Auer at al., 2015a), we were able to identify the parameter set shown in Table II
for the main parameters of interest of MPC1 with the root mean square measure e = 3.5259K.
As a comparison, the best parameter set obtained for the non-simplified model of dimension one
so far has the measure e = 2.1641K. Another advantage of MCP1 is the reduced computing time
for pure simulation with known parameter sets. Our general conclusion about the model MPC1 is
that it can be used efficiently in the context of an online simulation or control over relatively short
time intervals. In Section 4, we will further explore the properties of this model by studying its
sensitivity to parameters and its ability to account for parameter uncertainty.

Table II. The best obtained parameter sets for MPC1 and MPL1.

Model c αi = αj = αk cN2,0 cN2,1 cCG,0 cCG,1 e

MPC1(F1.a&F2.a) 4.53503 · 106 1.49548 · 10−3 1.96452 · 106 – 1.52826 · 107 – 3.5K

MPL1(F1.b&F2.a) 3.38579 · 104 3.60235 · 10−5 5.52725 · 106 −11221.8 −8.88817 · 104 483.868 0.5K
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3.3. Simplified Model MPL1: Linear Heat Capacities

The simplified model MPL1 relies on linear polynomial approximations for the heat capacities.
Assuming that the preheater states are not constant inside the time interval (of width 1s) where
other control variables are constant, we obtain a Riccati equation for the temperature which does
not seem to have an analytical solution. For piecewise constant preheater states, we can derive a
closed-form expression similarly to (Auer et al., 2014) as shown in the following.

If the preheater states are not constant, Eqs. (8)–(11) stay the same as for MPC1 from the
previous section. The equation for the temperature θ turns into

θ̇ = −cinvm · (kconst(t) + klin(t)θ + ksqθ
2) (17)

where kconst(t), klin(t) depend on time and θ2 appears on the right side of the equation with the
constant coefficient ksq:

kconst(t) = −θAka − (y3(t)cCG,0 + y1(t)cN2,0) (ka as in Section 3.2) ,

klin(t) = k+ṁ
in
CG · cCG,0 + ṁin

N2
· cN2,0 − (y3(t)cCG,1 + y1(t)cN2,1) ,

ksq = ṁin
CG · cCG,1 + ṁin

N2
· cN2,1 .

Now we have two additional parameters cCG,1, cN2,1 as compared to MPC1, resulting from the fact
that we represent heat capacities of gases as cN2(θ) = cN2,0 + cN2,1 · θ, cCG(θ) = cCG,0 + cCG,1 · θ.
Equation (17) is a Riccati equation. Since ksq does not depend on time in our case, it can be
transformed into a system of the following linear ODEs with non-constant coefficients:(

y4

y5

)′
=

(
0 1

−(cinvm )2kconst(t)ksq −cinvm klin(t)

)
·
(
y4

y5

)
, (18)

where the temperature θ equals
y5

cinvm ksqy4
. The matrix in Eq. (18) does not necessarily commute

with itself for given points of time t, s so that finding a closed-form expression in this case seems
impossible. Therefore, we assume now that the preheaters behave as constant functions inside
intervals of width 1s (piecewise constant on the whole) similarly to control variables. The values
of y1 and y3 can be measured with the sampling frequency of 1s between Tb and Te. The closed-
form solution for the temperature equation with – now constant – coefficients kconst, klin and
y1(t) = ymeas1 , y3(t) = ymeas3 has different branches in dependence on D = k2

lin − 4 · kconst · ksq:

D > 0 : θ(t) =
1

ksq


√
D

1− e−cinv
m (t−t0)

√
D ·

(
1− 2

√
D

2ksqθic + klin +
√
D

) − klin +
√
D

2

 ,

D < 0 : θ(t) =

√
−D tan (−

√
−D
2 cinvm (t− t0) + θc)− klin

2ksq
, θc = atan

(
2ksqθ

ic + klin√
−D

)
, (19)

D = 0 : θ(t) =
2θic + klin/ksq

2 + cinvm (t− t0)(2ksqθic + klin)
− klin

2ksq
.
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From the definitions for kconst, klin, ksq and the data, it is likely (but not certain) that D is positive.
For the set of parameters obtained in MATLAB (F1.b&F2.a), we checked that to be so. However,
the measure e for this parameter set and MPL1 is not satisfactory. If we take this set as starting
values in UniVerMeC and use the model variant F1.b&F2.a, we obtain a much better parameter
set (cf. Table II). Note that the measure e for this set is even better than that achieved by using
the non-simplified model (Auer at al., 2015a). A drawback is that there is a branch change for the
solution θ(t) in this case (from D > 0 to D < 0). However, this fact does not make any difference
for the pure simulation. The difficulties would occur during stages in the verification and validation
process requiring derivatives of θ (e.g. sensitivity analysis, uncertainty quantification with Taylor
models). More information about that is in the next section. Our general conclusion is that MPL1
is a very promising simplification (both as F1.a and F1.b), which is able to handle a wide range
of operating conditions in the same way as the non-simplified model. Moreover, it is faster and
possesses a closed-form solution.

4. Uncertainty Quantification and Sensitivity Analysis for MPC1 and MPL1

In this section, we analyse the performance of the proposed simplified models MPC1 and MPL1
with respect to their ability to take into account uncertainty in model parameters during the
simulation stage. That is, we assume that the parameters of the both models have already been
identified as reported in (Auer at al., 2015a). We rely on the parameter values given by Table II
which we obtained by using the interior point optimizer IPOPT (Wächter and Biegler, 1991) inside
the framework UniVerMeC (Kiel, 2014). In this sense, the results of the parameter identification
stage for these SOFC temperature models are not verified and have verification degree of C3 (cf.
Section 2.3).

One possibility to quantify the uncertainty during the simulation stage is to use methods with
result verification. This has an additional advantage: the produced simulation data are proven to
be correct wrt. the considered mathematical model (i.e., do not contain any numerical errors). If
there is no uncertainty in parameters, the simulation results – now nonetheless (tight) intervals
containing the true solution – can be intersected with the sets given by Condition (4). If they stay
inside the bounds of (4), the parameters obtained in the non-verified way mentioned above are
validated. Both of the sets from Table II are valid in this sense.

To actually quantify the uncertainty, we consider variants F1.a and F1.b for MPC1 and MPL1
and three kinds of arithmetics with result verification (F2.b-F2.c). These are the interval arith-
metic as implemented by C-XSC (Hofschuster et al., 2008), affine arithmetic implemented by
Yalaa (Kiel, 2014), and Taylor model arithmetic from RiOT (Eble, 2007). The term “arithmetic”
means that we need only basic operations such as addition along with several elementary functions
such as the exponential (ex). However, the combination F1.b&F2.b requires a verified solver for ini-
tial value problems, for which purpose we employ VNODE-LP (Nedialkov, 2002). At the moment,
there are no other verified IVP solvers available in UniVerMeC where we implement the models
and conduct computations during all stages of modeling and simulation cycle for SOFC temper-
ature. That is, the combination F1.b&F2.c is possible in principle but not currently implemented
inside UniVerMeC.
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We have not mentioned variant F1.c so far, the reason being that it was found to be too
slow (Pusch, 2013; Auer et al., 2014) even in its non-verified form F2.a. Additionally, it is not
interesting from the point of view of the simulation stage since it is the same as for F1.b. The real
advantage concerns the stage of parameter identification which is not in our focus in this paper.

The question of MPC1 and MPL1 sensitivity to parameters is also an interesting one. The
answer allows us not only to apportion the output uncertainty to different inputs, but also to choose
variables with dependency tracking (e.g., in affine or Taylor model arithmetic) efficiently. Therefore,
this section is structured as follows. First, we outline the principles of the framework UniVerMeC
in short. After that, we carry out sensitivity analysis for MPC1 and MPC2 using floating point
arithmetic and algorithmic (“exact”) differentiation as implemented in FADBAD++ (Stauning,
1997). Finally, we consider uncertainty in heat capacities of gases and propagate it through the
system, which allows us to assess the usefulness of the considered models for that purpose.

4.1. UniVerMeC — An Interoperable Framework

Although originally developed for distance computations, the framework UniVerMeC works very
well for the stages of parameter identification and simulation during the modeling and simulation
cycle for SOFC temperature. Its major advantage consists in decoupling a computerized model from
the arithmetic it works with. Usually, users have to decide which arithmetic their implementations
are based on. The default choice is the floating-point arithmetic, although it has a number of
disadvantages (for example, we cannot guarantee that the computed result is actually correct).
Through its layered structure and, in particular, its adapter concept, UniVerMEC allows us to
implement a mathematical model largely without the need to think about the kind of arithmetic we
want to use. This helps to choose arithmetics according to the actual goal (e.g., offline verification
as opposed to fast online simulation/control) and even combine verified and non-verified techniques
in a meaningful way (e.g., floating-point parameter identification followed by interval simulation).
Currently, UniVerMeC does not implement any stochastic methods or arithmetics. However, it
can be extended in this way, which would provide even more possibilities for interoperable work.

UniVerMeC’s layered structure is relaxed, that is, a layer can be skipped. The bottom layer
core provides access to floating point, interval, and affine arithmetic as well as to Taylor models,
which share a common interface but rely an different adapters. The next layer, function, allows us
to represent scalar and vector-valued functions uniformly if their mathematical sense is supplied
according to the formalization from (Kiel, 2014). This concept helps to evaluate a function with all
arithmetics supported at the core layer. We introduce abstractions for derivatives, slopes, Taylor
coefficients or contractors at this level, a list which advanced users can extend if necessary. The third
layer is responsible for defining models in the framework, for example, the IVPs given in Section 3.
It merges the relevant abstractions provided at the previous two layers into one entity. Specialized
data structures for higher-level algorithms are at the fourth level, for example, those for special
types of search space decomposition used in optimisation. Actual algorithms are implemented at
the topmost level. UniVerMeC offers its own global optimisation algorithm GlobOpt based on
that described in (Hansen and Walster, 2004). Additionally, external software such as IVP solvers
or further optimisers can be interfaced at this level. For example, we interface the interior-point
tool IPOPT for non-verified optimisation.
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4.2. Sensitivity Analysis

Since UniVerMeC already implements the possibility to obtain derivatives for the models, it is easy
to study different forms of MPC1 and MPL1 from this point of view. We chose to rely on floating
point arithmetic in this case although we could have also used intervals or affine forms. The reason
is that a number characterising the first derivative of the temperature θ(t) or the objective function
J wrt. a certain parameter p gives us enough information to apportion uncertainty appropriately.

First, we consider the SOFC temperature θ(t) as modeled by MPL1 (cf. Eqs. (17) and (19)) in

some detail. Since our simplifications concerned the heat capacities, we compute
∂θ(tk)

∂cN2,0
,
∂θ(tk)

∂cN2,1
,

∂θ(tk)

∂cCG,0
, and

∂θ(tk)

∂cCG,1
for each point of time tk ∈ {Tb, Tb + 1, . . . , Te}. In Figure 1, the results are

shown for F1.a (that is, Eq. (19)) on the left and F1.b (that is, Formula (6) in floating point with
f defined by the right side of Eq. (17)) on the right. The Figure demonstrates that, out of the four
mentioned parameters, both model variants are most sensitive to cCG,1. On the whole, variant F1.b
is much less sensitive to changes in parameters.
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Figure 1. Sensitivity of the modeled SOFC temperature to the heat capacity of nitrogen and cathode gas for the
model MPL1: exact solution on the left (F1.a), the Euler approximation on the right (F1.b).

Out of all possible parameters, MPL1 is most sensitive to αi (equal to αj and αk in our setting).

Instead of computing
∂θ(tk)

∂p
for all relevant points of time, we now consider

∂J

∂p
because, according

to Formula 3, it essentially summarizes such plots as in Figure 1 in one number. The results for both
MPL1 and MPC1 (as F1.a and F1.b) are given in Table III. Aside from demonstrating extreme
sensitivity to αi an all cases (which was also witnessed in experiment), it lets us observe that
both variants of MPC1 are almost equally sensitive to changes in parameters, whereas there is a
big difference for the variants of MPL1. The variant MPL1 as F1.b is the least sensitive one and,
therefore, can be efficiently employed for parameter identification, the claim supported by the fact
that the best parameter set so far was computed using this option. In Figure 2, we can see that
MPL1 describes the measured data in the best way (both as F1.a and F1.b).
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Table III. Sensitivities of the objective function J (cf. Eq. (3)) for the models MPC1 and MPL1 under F2.a.

J
∣∣∣∂J
∂c

∣∣∣ ∣∣∣ ∂J
∂αi

∣∣∣ ∣∣∣ ∂J

∂cN2,0

∣∣∣ ∣∣∣ ∂J

∂cN2,1

∣∣∣ ∣∣∣ ∂J

∂cCG,0

∣∣∣ ∣∣∣ ∂J

∂cCG,1

∣∣∣
F1.a, MPL1 2.93594 · 101 3.8117 · 1010 4.9631 · 10−2 2.63897 · 101 1.46662 1.26157 · 102

F1.b, MPL1 4.76907 · 10−3 6.87924 · 105 5.36099 · 10−5 2.20879 · 10−2 1.3089 · 10−3 5.25226 · 10−1

F1.a, MPC1 3.09309 · 10−1 2.44704 · 108 8.48586 · 10−2 – 1.36277 · 10−1 –

F1.b, MPC1 3.09307 · 10−1 2.44754 · 108 8.48573 · 10−2 – 1.36288 · 10−1 –
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Figure 2. SOFC temperature modeled by MPL1 and MPC1 using F2.a in comparison to the measured data.

4.3. Uncertainty Quantification

We consider uncertainty of different magnitudes in parameters cN2,0 and cCG,0 and try to propagate
it through the models MPL1 and MPC1 (both as F1.a) using interval, affine, and Taylor model
arithmetics. The variant F1.b as a pure approximation by Formula (6) is not feasible in this context
because the deviation from the true solution would be too large. That is, to be accurate, we
need to solve the corresponding simplified system (Eqs. (8)–(12) or Eq. (17)) numerically in this
case. For comparison, we do this under uncertainty using the interval IVP solver VNODE-LP.
Additionally, we measure the wall times needed for each relevant simulation. Our goal is to establish
an uncertainty level in these parameters which would allow us enclose the measured data in a
meaningful way, that is, not entirely because of overestimation effects.

The MPL1 solution from Eq. (19) takes preheaters into account only as measurements, whereas
the exact solution in Eqs. (13),(14),(16) explicitly describes them. Besides, the solution in Eq. (19)
has three different branches. To be able to enclose all possible states, it is necessary to compute
the convex hull of enclosures of all three branches each time when the upper bound of D is not
strictly less than zero or the lower bound of D is not strictly larger than zero. This fact makes
MPL1 as F1.a more prone to overestimation than other variants, which is reflected in Figure 3,
left. Only the uncertainty of ±10−5% of the nominal parameter values of cN2,0 and cCG,0 (cf.
Table II) can be considered in interval arithmetic meaningfully, for both variants F.a and F.b (the
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Table IV. Computing times for temperature simulations with exact solutions to models MPC1
and MPL1 under uncertainty ±U% in cN2,0 and cCG,0 using interval, affine, and Taylor model
arithmetics. The last column shows times for the corresponding variant without the exact solution,
obtained using interval-based solver VNODE-LP.

Intervals Affine forms Taylor models VNODE-LP

MPC1 0.34 s (U = 10−4) 112.09 s (U = 1) 207 s (U = 10) > 1 day (U = 10−4)

MPL1 0.12 s (U = 10−5) 23.34 s (U = 50−5) 120.5* s (U = 10−3) 228.42 s (U = 10−5)

latter with VNODE-LP). Note that the nominal values for these parameters are of orders 106, 104

for the considered parameter set. The uncertainty of ±10−4% leads to too large overestimation
in the output θ(t), so that these enclosures are not useful. Affine forms (with a restart each 5
steps so that the dependencies are lost and the overall simulation is faster) can handle a slightly
larger uncertainty of ±50−5%. Taylor models perform better with respect to uncertainty (±10−3%)
but have a different problem with the solution as in Eq. (19). The library RiOT we employ for
Taylor model computations does not implement the elementary function atan, so that the branch
containing it cannot be used and we have to stop computations.
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Figure 3. Upper and lower bounds of the temperature with uncertainty in cN2,0 and cCG,0: MPL1 on the left and
MPC1 on the right.

The model MPC1 behaves better with respect to uncertainty propagation (cf. Figure 3, right).
Although interval arithmetic cannot handle more uncertainty than ±10−4% in a meaningful way,
affine forms propagate ±1% and ±10%, respectively, despite large nominal values of cN2,0, cCG,0 for
the considered parameter set. The general form of the trajectory is preserved, and the measurement
data are enclosed.

In Table IV, the computing times are shown. As a benchmark, we recorded the time necessary for
10 runs of each variant. The table gives the corresponding wall times divided by 10. Not surprisingly,
the variant F1.b for both models is slow, extremely so for MPC1 (cf. the last column of the Table).
Note that the speed in this case depends on the parameter set, since VNODE-LP implements
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a dynamic stepsize control. That is, the simulation can be faster for a different parameter set;
however, since the set from Table II had the closest fit for MPC1, we decided not to change it.
The simulation reached tk = 1761 s before we terminated it. As opposed to it, VNODE-LP could
handle the variant F1.b for MPL1 in an acceptable time. However, the variant F1.a is still faster
(especially for MPL1 because it does not have to handle the preheaters explicitly). Besides, we are
able to use affine forms and Taylor models here, which achieve acceptable computing times. Note
that the time for MPL1 with Taylor models is provided only as a reference for a different parameter
set for which it does not become necessary to change the solution branch (so that we do not have
to compute atan and the simulation is not terminated).

5. Conclusions

In this paper, we analysed two simplified versions of the one dimensional SOFC temperature model
from the point of view of their performance during the simulation stage of the modeling and
simulation process. The simplification concerned the heat capacities of gases, which were assumed
to be constant (MPC1) or linear (MPL1) in temperature, respectively, as opposed to the normal
version of the model operating with polynomials of order two. For MPC1 and MPL1, we were able to
provide closed form expressions for the solutions (F1.a). Additionally, we analysed the performance
of MPC1 and MPL1 when the obtained IVPs were solved numerically (F1.b). Having identified
good parameter sets for both models, we performed a sensitivity analysis, which confirmed the
experimentally observed fact that both models were very sensitive to changes in coefficients of
heat convection. Since the simplifications concerned the heat capacities of the anode and cathode
gases, we considered bounded uncertainties in them and propagated them through the system using
interval, affine, and Taylor model based methods, which, in addition to the mentioned uncertainty
quantification, allowed us to rule out the possibility of numerical errors during simulation.

The models MPC1 and MPL1 are now analysed almost completely from the point of view of
simulation. The MPL1 is able to describe the measured data for wide ranges of operating conditions
in the best way if no uncertainty in parameters is considered. The variant relying on the closed form
expression is the fastest in all considered arithmetics, but less suitable for uncertainty propagation
than the corresponding MPC1 one. Using the latter, we are able to process uncertainty of up to
the order ±10% of the (large) nominal values of parameters under Taylor model arithmetic without
much overestimation, whereas the former one is good for uncertainties up to ±10−3%. The problem
is that the solution to MPL1 has different branches, which might lead to a large overestimation in
“undecided” situations where a convex hull of all possibilities needs to be considered to ensure a
verified result. Note that the nominal values are of orders up to 107 in the parameter sets with the
smallest root mean square measures. The numerical variants of both models are actually too slow
to propagate the uncertainty in real time simulations, especially for MPC1. However, they are less
sensitive to changes in parameters, which makes them attractive at the (offline) identification stage
of the process. An overall conclusion is that MPC1 can be efficiently used over shorter time intervals
(especially with uncertainty, in which case it produces enclosures covering the data). MPL1 can
compete with the usual non-simplified model from the point of view of data fit over long time
intervals and is faster both as the closed-form and the numerical variant.
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In our future work, we plan to explore the possibilities to speed up the parameter identification
stage using the GPU. (Note that it would not be possible to employ the GPU for the classical
simulation stage in our context since it is sequential in its nature — we need initial values as
simulation results from the previous step to be able to proceed.) In (Auer et al., 2012; Auer et
al., 2014), we have already applied that idea to the verified parameter identification for the non-
simplified SOFC temperature model, achieving a significant speed-up. However, we were not able
to verify the optimum because of overestimation, and the obtained candidate parameter sets were
not very satisfactory with respect to the data fit. We hope that exact solutions to simplified models
will help to verify the optimum, so that an overall verification degree of C1 can be achieved (in an
acceptable time owing to the GPU). Moreover, it might be possible to employ the model variant F1.c
which was dismissed until now because of very high computing times. This goal cannot be reached
very easily for a technical reason: implementations of verified methods (e.g., interval analysis, etc.)
on the GPU are still very rudimentary in comparison to those available for the CPU.
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